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Abstract

In this paper, we construct a general model of cognitively diverse problem
solvers. We use this model to derive two main results: (1) a collection of cognitively
diverse problem solvers can locate optimal solutions to difficult problems and (2) a
collection of diverse problem solvers with limited abilities tends to jointly outperform
a collection of high ability problem solvers, where a problem solver’s ability equals

her expected individual performance.
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1 Introduction

In this paper, we present two models of heterogeneous problem solvers that demon-
strate the importance of cognitive diversity. These models provide formal underpin-
nings for a growing empirical literature on the correlation between group diversity
and performance (Jackson, Hughes-Jackson and Ruderman [1996]). More generally,
we can interpret our results as suggestive of a theory of specialization in the context
of the problem solving segment of the economy. By possessing specialized cognitive
skills, problem solvers can make distinct contributions. In this reading, our findings
agree in spirit with the seminal works by Taylor [1967] on routinization of tasks and
Simon [1962] on administrative efficiency, even if our models do differ in one very
important detail: in our framework, no central authority decomposes the task or
problem.

Our analysis rests on two premises: (i) that economically relevant, difficult
problems exist, and (ii) that people differ in how we interpret these problems and
in the cognitive tools we bring to bear on them. This second premise precludes a
meaningful unidimensional ranking of intelligence or ability (Becker [1973], Mortensen
[1988]). An individual’s contribution to collective performance depends on her being
intelligent, but it also depends on her having unique cognitive skills relative to others
that have worked on the problem. By means of analogy, a pin factory consisting of

only people who made the heads of pins would not produce very good pins. Similarly,



firms, organizations, and societies whose members all think alike may not produce
very good solutions.

How important is diversity? We report the output of computational experi-
ments in which collections of randomly selected problem solvers outperform collec-
tions composed of the best individual problem solvers. When we first ran these
experiments, we were surprised. We were even more puzzled by how much effort it
took to choose parameters where the result did not hold. This led us to derive a
set of conditions under which it is always true that random collections fare better
than a collection of the best. Those conditions are the main theoretical result in the
paper. The crucial conditions are that the problem is difficult and that the random
problem solvers are cognitively diverse. Our findings do not imply that firms should
find random replacements for their most intelligent employees. To the contrary, our
model suggests that firms should only hire intelligent people, but that they should
search for multiple types of intelligence.

In presenting our findings, we distinguish between collections of problem solvers
and groups. We consider a collection of problem solvers to be some number of indi-
viduals working on a problem, possibly sequentially or in parallel. Two people whose
lives never overlapped could be a member of the same collection in our formulation.
In contrast, a group consists of people who interact in space and time. These people

have identities, genders, values, races, ethnicities, titles, reputations, and histories;



They probably vary in their ability to communicate. Our analysis ignores these fea-
tures. We focus entirely on cognitive abilities. We assume that our problem solvers
communicate errorlessly and assign the same values to solutions. Our analysis may
better fit economic problems where profits might be a common yardstick than it does
political problems where variations in values are likely to be the norm.

Our neglect of several aspects of groups notwithstanding, our analysis can be
informed and supported by a burgeoning literature on the performance of diverse
groups. At first glance, this literature appears to say that diverse groups have higher
variance outcomes - that some do better than homogeneous groups and some do
worse (Ruderman, Hughes-James and Jackson [1996]). But a careful look reveals a
more nuanced relationship. To grasp the benefits and costs of diversity we must first
distinguish between diverse values and diverse skills. Diverse values muck up the
group problem solving process (Raghuram and Gerhard [1996]). Diverse skills are
good. Second, we must draw a distinction between cognitive diversity and identity
diversity (Northcraft, Polzer, Neale, and Kramer [1996]). A group consisting of people
of different races, cultures, genders, and ages need not be cognitively diverse, and two
white males of similar training and background need not think about a problem
the same way. That said, the literature on group problem solving tends to assume
correlation between cognitive diversity and identity diversity. This assumption rests

on the idea that gender, ethnicity, race, etc... must influence how people interpret



and interact with the world (Ceci and Roazzi 1994).
In fact, studies that take these forms of identity diversity as proxies for cog-
nitive diversity find support for diverse group composition. Consider the following

excerpt from a widely used organizational behavior textbook Robbins [1994]:

When a group is heterogeneous in terms of gender, personalities, opinions,
abilities, skills, and perspectives, there is an increased probability that the group will
possess the needed characteristics to complete its tasks effectively. The group may be
more conflict laden and less expedient as diverse positions are introduced and assim-
tlated, but the evidence generally supports the conclusion that heterogeneous groups

perform more effectively than do those that are homogeneous. (p 261)

More careful studies strip away or control for value and identity differences and
focus only on the cognitive differences. The evidence here in favor of diverse group
composition is even stronger. Studies of creativity and innovation conclude that cogni-
tive variation is the key explanatory variable (Hoffman [1959], Maier [1930], and Ama-
bile [1983]). Social psychologists show that heterogeneous teams which bring multiple
perspectives outperform homogeneous teams in idea generation (Filley, House, and
Kerr [1976], Hoffman [1979], and McGrath [1984]). In a recent experimental paper,
Blinder and Morgan [2000] find that two people perform better than one, though
there analysis rests more on Nisbett and Ross’s [1980] idea that two people are less

likely to make the same mistake. Turning to more applied research, if you rank top



management teams by functional diversity (training, background, etc...), you find
that the more diverse teams introduce more innovations (Finkelstein and Hambrick
1990, Bantel and Jackson 1989). Similarly, if you evaluate the long history of affir-
mative action in the marketplace and analyze its successes and failures, you find that
cognitive diversity is a key explanatory variable for success. Thomas and Ely [1996]
in just such an analysis write “Diversity should be understood as the varied perspec-
tives and approaches to work that members of different identity groups bring.”! And
finally, if the proof is in fact in the pudding, management gurus such as R. M. Kanter
[1983] find evidence that firms purposefully create diverse teams in order to exploit
diverse interpretations and skills.

Even if we agree that cognitive diversity exists, we are left with the question of
how to model it. We cast our lot with a growing number of psychologists, anthropol-
ogists, and neuroscientists who promote a “domain specificity” approach to human
problem solving (Hirschfield and Gelman [2001]). The basic idea is that we should
think of humans as having domain and problem specific tools as opposed to being
general problem solvers. To put this another way, we should think of people as having
bags of tricks rather than as Turing Machines. We attempt to capture these ideas
with a framework which consists of two components: perspectives (domain encodings)

and sets of heuristics (skills or tools).

I The italics are theirs.



The use of heuristics is widespread in economics. Several papers define heuris-
tics for game playing automata (Rubinstein [1986] and Kalai and Stanford [1988]).
These automata may evolve (Miller [1996], Arifovic [1994], or Marimon, McGrattan
and Sargent [1990]) or be rationally selected. In these models, the automata play
strategies in games, whereas in our model, the heuristics attempt to locate a better
solution to a problem. These differences aside, in our model and the earlier models,
heuristics ? are rules of thumb that cognitively or time constrained agents apply as
they attempt to earn higher payoffs.

In contrast, our inclusion of diverse perspectives is novel. Most automata
models assume exogenous and identical perspectives for all problem solvers (Gilboa

3 A new or

[1988]). Yet in practice, people differ in how they encode problems.
fresh perspective on a problem can lead to breakthroughs. No less authority than
Stephen Toulmin [1962] writes “The heart of all major discoveries in the physical
sciences is the discovery of novel methods of representation, ...” Perhaps a more
common experience is that by switching from Cartesian to polar coordinates, we

can sometimes simplify integration in multiple dimensions a great deal. Polar and

Cartesian coordinate systems are examples of perspectives.

2More recently, economists and other social scientists have begun to construct models where
agents evolve sets of heuristics to accomplish multiple tasks (Samuelson [2001], Bednar and Page
[2001]). These models are relevant to us in that they demonstrate how diverse contexts create
distinct sets of heuristics.

3In fact, even game theorists vary in how they encode algorithmic strategies. Some use percep-
trons (Cho [1993]), and some use Moore machines (Miller [1996]).



Mathematically, the perspective/heuristic model can be cumbersome, and as
we show in an earlier paper (Hong and Page [2001]), it is over specified: two problem
solvers with distinct perspectives and heuristics can act identically in the space of
solutions. Therefore, in our mathematical model, we map the perspective and heuris-
tics of a problem solver down to a map on the set of solutions. This buries the source
of cognitive diversity but it has no effect on its manifestation. It is in this starker
framework that we prove the main result of the paper.

Despite the fact that our formal proofs do not require the full perspective/
heuristic framework, we include it for several reasons, first and foremost being its
cognitive realism. Without the complete model we would have no foundation for the
assumption that the maps are diverse. We would be making an ad hoc assumption.
With it, we can attribute diversity to distinct encodings of information and unique
life experiences that lead to distinct accumulations of rules of thumb. Second, from a
computational point of view, the use of both perspectives and heuristics is unavoid-
able. Computational problem solvers must encode the problem somehow, and they
must use techniques to search for improving solutions. Third, the mathematical the-
orem began as a conjecture inferred from the computational model, and the intuition
behind our results are more transparent with the richer assumptions. Fourth, the
computational findings complement the mathematical result which states that there

exist an N and an N; such that the best N; of N problem solvers do not perform



as well as a random N; problem solvers. The computational model uses rather small
N and N, (for example, in one case N = 60) suggesting that theorems with even
weaker assumptions may be obtainable. Thus, the computational experiments should
be interpreted as separate and corroborating support for the intuition that diversity
improves outcomes. Finally, the perspective/heuristic model allows us to distinguish
human problem solving diversity from computational problem solving diversity. Com-
puters and people differ in their abilities to exploit diverse perspectives and diverse
heuristics. Computers can iteratively apply multiple heuristics with awesome speed,
but they have a difficult time communicating across perspectives. Humans apply
heuristics rather slowly, but can switch perspectives quickly and can communicate
across diverse perspectives.

Our findings can be interpreted at two levels. As we have suggested, they
provide a partial explanation for the empirical regularity that cognitive diversity pro-
duces benefits. One can imagine introducing our findings into the ongoing discussion
of the value of unidimensional or two dimensional test scores like the SAT. Alter-
natively, our work, along with our previous paper (Hong and Page [2001]), can be
seen as contributing to a theory of production in a knowledge economy, an economy
where substantial economic resources go to solving difficult problems (Page [1996],

Page and Ryall [1998]).* By this we mean activities such as designing computer chips,

“Information processing problems of the type studied by Radner [1993] and Radner and VanZandt
[1995] are not, in our classification, difficult. They are just big.



cars, and welfare policies; constructing legal defenses; developing hardware and writ-
ing software; writing, producing, and directing movies, plays, and television shows;
developing environmentally safe products; and streamlining production processes and
information systems. Our findings suggest that in this segment of the economy, cog-
nitive diversity matters, perhaps as much as cognitive ability.

The remainder of the paper is organized into four sections. In the next section,
we describe a general model of diverse problem solvers who rely on perspectives and
heuristics. The following section contains two computational models that demonstrate
the main formal results of the paper: that the collective performance of cognitively
limited problem solvers can be optimal and that a group of randomly selected problem
solvers can outperform a group of the best performing problem solvers. The mod-
els also highlight the distinction between diverse perspectives and diverse heuristics.
Section 4 contains a finite version of our mathematical result. The general version is
in the appendix. The final section includes applications and a discussion of possible

extensions of our model.

2 A General Model

We assume a finite number of problem solvers of limited ability who attempt to max-
imize a value function defined over a set of objects X. The set X can be finite or

infinite. All problem solvers assign the same values to objects as given by a value
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function V' : X — R. We assume that each problem solver has an internal language
in which she perceives the objects. This internal language may be interpreted ei-
ther at the neurological level—our brains perceive and store information, and these
perceptions differ across individuals—or at the metaphorical level—we interpret prob-
lems based on our training as economists, lawyers, etc. We call the representation of

objects in the problem solver’s internal language her perspective.

Def’n: A perspective M : R — I', where I" is the internal language, and R is a

subset of X.

If a perspective is both one to one and defined for all of X, i.e. R = X,
and M is a one to one mapping, then we say that it is a complete perspective. In
general there is no reason to assume that a problem solver’s perspective is complete.
A perspective may not be defined over all of X, i.e. R can be a proper subset of
X, in which case an agent has no internal representation of some objects. Also, a
perspective may be many to one, in which case more than one object are mapped
to the same representation in the internal language. For the following definitions,
however, we only consider complete perspectives.

A problem solver’s heuristic, denoted by A, is a mapping from elements of
M (R) in her internal language to subsets of M (R). Given a v € M(R), A(y) CM(R)

is interpreted as the set of neighboring objects in the internal representation of the
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problem solver that she would check to find an improvement. Let S = M(R). We
restrict attention to a class of heuristics that consists of a collection of functions

defined on S. For any 7 =1 to m, let f; : S — S be a function. We then define a

heuristic A = {fi, ..., fm}, where A(y) = {f1(7), .-, fm(7) }-

Def’n: A heuristic A= {fi,..., fn} where f; : S — S for j =1 to m.

For the moment, we refrain from presenting a precise description of how prob-
lem solvers apply heuristics to problems. We only assume that the heuristic deter-
mines those objects which a problem solver would evaluate given a status quo object.
A problem solver tries each function f; in her heuristic until she can no longer find
an improvement. When she arrives at an object from which she can not find another
improvement by applying her heuristic, this object is her solution to the problem and

it is called her local optimum.

Def’n: Given a problem solver (M,A) where A = {fi, ..., fm}, an object x is a
local optimum with respect to (M, A), x €L((M,A),V), if and only if V(x) >

V(M= (f;(M(x)))) for all f; € A.

Clearly, the set of local optima of an agent depends on both her perspective and her
heuristic.

We have yet to describe how the collection of problem solvers attacks a prob-

12



lem. They can approach the problem sequentially or simultaneously. For the math-
ematical results that we derive later, the precise rule does not matter so long as the
final solution lies in the intersection of the local optima of all the problem solvers.
However, in performing simulations, a fair comparison of groups of problem solvers
requires that the two groups proceed similarly. In the two computational models that
we describe in the next section, the problem solvers attack the problem sequentially.®
The first problem solver searches until she attains a local optimum. The second prob-
lem solver begins her search at that point. After all problem solvers have attempted
to locate higher valued objects, the first problem solver searches again. Search stops
only when no problem solver can locate an improvement, i.e. until the object lies in

the intersection of the problem solvers’ local optima.

3 Two Computational Models

We construct two computational models that illustrate the power of diversity in
problem solving. They support the main findings of our mathematical model: di-
verse, bounded problem solvers can collectively find good solutions to difficult prob-
lems and groups of random problem solvers outperform groups of the best problem
solvers—those who working alone have the highest expected value from search. The

first model considers problem solvers with diverse perspectives. The second model

SFor the precise definition, see Hong and Page [2001].
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considers problem solvers with identical perspectives but diverse heuristics.

3.1 Model 1: Diverse Perspectives in R"

Problem solvers are confronted with the following multidimensional maximization
problem whose domain is the unit ball in R" denoted by B™. The «;’s and the ;s

are uniformly drawn from the interval (—1,1).

n n n-—1
V(z) =2 i i+ > > By i z; where oy, B € [1,1]
i=1 i=j+1 j=1

We create one thousand random problem solvers. Each problem solver has a
perspective: (z!,22,...,2") where ' # 0 and z2* € B". In this model, problem solvers
have different perspectives but have the same heuristic. A perspective is nothing
more than a basis of R". The heuristic employed by each problem solver consists
of movements along each of the vectors of her basis a distance of 0.1 units. Here,
perspectives generate all of the diversity.

In the simulation data shown below, we set n = 30. We performed similar tests
for n varying between ten and one hundred and found similar results. Notice first
that the individuals are not especially good at solving the problems and that even the
best individual performs poorly relative to a simple hillclimbing algorithm or a genetic
algorithm. Collectively, the group of all one thousand problem solvers outperforms
the genetic algorithm and the hill climbing algorithm. The computational model

14



demonstrates how a group of bounded, diverse problem solvers can perform effectively

on a difficult problem.

Approach n = 30 Value (s.d)
Individuals 8.1 (0.14)
Best 10.8 (0.18)
Group 14.5 (0.22)
9000 Random 9.7 (0.28)
Hill Climbing 13.3  (0.24)
Genetic Algorithm 144 (0.21)

We next turn to how well collections of the best problem solvers, the worst
problem solvers, and random problem solvers perform. Here, we obtain two surprising
findings. First, on average, the worst twenty find nearly as good of a solution as the
best twenty collectively (13.8 v.s. 14.2). Second, twenty random problem solvers
outperform the best twenty problem solvers (14.3 v.s. 14.2). One explanation, the
one that we propose in this paper, is that the twenty random problem solvers have

more diverse perspectives than do the best twenty problem solvers.
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Approach n = 30 Value (s.d)
Individuals 8.1 (0.14)
Best 20 9.5 (0.17)
Worst 20 6.7 (0.14)
Group 14.5 (0.22)
Group Best 20 14.2 (0.23)
Group Worst 20 13.8 (0.22)
Group Random 20 14.3 (0.22)

To test the claim that diversity explains the increase in performance, we could
measure the diversity of the perspectives. However, the calculations of diversity
become messy in this model. So we turn our attention to our second model with

diverse heuristics which allows for a cleaner analysis.

3.2 Model 2: Diverse Heuristics on a Circle

In this model, a finite set of n objects are encoded as n points on a circle. All problem
solvers use the same perspective, i.e., they have the same encoding of the objects.
We assume a random value function mapping {1, 2, ..., n} into the real numbers. The
value of each of the n points is independently uniformly drawn from the interval

[0,100]. We number the points consecutively from 1 to n on a circle clockwise. The
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heuristic that a problem solver uses allows her to check £ positions that lie within [

points to the right of the status quo point on the circle. Herel </ <nand 1 <k <.

Example: Let n =200, k = 3 and [ = 12. A problem solver with heuristic (1,4,11)
starting at the point 194 would first evaluate point 195 [194+1) and compare it to 194.
If point 194 had a higher value, she would then evaluate point 198 [194+4). If point
198 had a higher value, she would then check point 9 [198+11-200). If that point had
a higher value, she then would evaluate point 10 (9+1). She keeps evaluating until

none of her three searches locates a point with a higher value.

Def’n: The stopping point of a heuristic ¢ = (o1, @, ..., 0x) applied to object m,

where ¢; € {1,2,...,1} and ¢; # ¢; for i # j, denoted by ¢(m), is defined as follows:

Step 1: a =0,t=0,5=m

Step 2: t=1t+1, st =3

Step 8: If t > k and s"% = s* then go to Step 7 else go to Step 4

Step 4: Leta=a+1. Ifa >k, then leta =1

e : Let s = + s°. s >n en tet 8 = +s" —n
Step 5 : Let s' = ¢, tIf’ , then let s' = ¢, t

Step 6: If V(s') > V(s'), then § = §', otherwise § = s*. Goto Step 2
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Step 7: ¢(m) = 3. End

A heuristic, then, maps a point into a point with a weakly higher value. To
compute the expected value for a problem solver, we start the problem solver at each
of the n points on the circle and compute the average value of the points where search

stops.

Def’n: The expected value of a heuristic ¢ given V,

El6.V]= 13- VIOl

In these computational experiments, we evaluate all heuristics within a well
defined class instead of randomly generating a set of perspectives as we did in the
first model. We restrict the set of heuristics to £ movements to the right, where each
movement has a maximum length /. The order that a problem solver applies these
movements may matter. The heuristics (5,6,9) and (9,5, 6) typically have different
values. Therefore, we consider these to be distinct heuristics.® The total number of
unique heuristics equals /- (I — 1) - -(l — k + 1). For example, if [ = 12 and k£ = 3,

then the total number of heuristics equals 1320. The 1320 heuristics can be ranked

6In simulations where we only create one heuristic instead of six for each triple of numbers, we
find identical qualitative results.
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by their expected values.

The diversity of two heuristics ¢* and @° of the same size k can be measured
either with respect to order or not. In the first case, we calculate the percentage of
#? that equal ¢?. In the latter case, we calculate the percentage of ¢¢ that equal qﬁé’-

for some j. The definitions are formalized below:

Def’n: The ordered diversity of ¢ and ¢°,

k— Zi’c:l 6( ga ¢S)
k

OA(¢%, ¢") = where §(¢%, %) = 1 if ¢ = ¢° and 0 else

Def’n: The diversity of ¢* and ¢°,

k=35 28 6(e8, 8h)

A, &) = !

where §(¢f, %) = 1if ¢f = ¢ and 0 else

For example, let ¢® = (5,6,9) and ¢* = (9, 5,6). Then OA(¢%, ¢°) = 1 since
for any i € {1,2,3}, ¢¢ # #°. However, A(¢?, ¢°) = 0 since for any i € {1,2,3},
o = qb;’- for some j € {1,2,3}. It is easy to see that for any two heuristics, the
ordered diversity weakly exceeds the diversity.

In the computational data we report, we set [ equal to either twelve or twenty

and set k£ equal to three. The number of points on the circle n equals two thousand.
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We experimented with [ varying between six and twenty, k£ varying between two and
seven, and n varying between two-hundred and ten thousand. Within these parameter
ranges, we found qualitatively similar phenomena.”

The values of each of the two thousand points on the circle were randomly
distributed uniformly in the interval [0, 100]. We ranked all of the possible problem
solvers by their expected values and created two groups, one consisting of the, say ten
best problem solvers—the problem solvers with the highest expected values—and one
consisting of ten randomly chosen problem solvers. The results from a representative
single run looked as follows: The best problem solver had a score of 87.3. The worst
problem solver had a score of 84.3. The average score of the ten best problem solvers
was 87.1, and the average score of the ten randomly selected problem solvers was
85.6. The group performance of the ten best problem solvers had a value of 93.2,
their average diversity was 0.45, and their average ordered diversity was 0.72. The
randomly selected group’s performance was 94.7, their average diversity was 0.76 and
their ordered diversity was 0.92. As in the previous computational model, the group
of random problem solvers collectively performed better. More importantly, we can

now verify that the random group contains more diverse members.?

Below we present data averaged over fifty trials.

7As the group size becomes large relative to the number of possible problem solvers, the group
of the best agents can outperform a group of randomly selected agents.

8Mathematically, the expected ordered diversity of two randomly selected problem solvers equals
% = 0.9183333. A more elaborate calculation shows that the expected diversity of two randomly

selected problem solvers equals % =0.75.
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Ten Problem Solvers [ = 12

Group Composition

Group Performance

Ordered Diversity

Diversity

Best Problem Solvers

92.56 (0.020)

70.98 (0.798)

38.77 (1.59)

Random Problem Solvers

94.53 (0.007)

90.99 (0.232)

75.13 (0.204)

On average, the group of the random problem solvers significantly outperforms
the group of the best problem solvers. In a typical run, the best problem solver in
the population had an average value of between 86 and 88 in each set of fifty trials
and a random problem solver had a value around two to three points lower. The
diversity measures show a striking difference in the constituency of the two groups.
The best group does not have nearly as much diversity as the random group. Two
questions immediately come to mind. First, what if we enlarge the group size, and
second, what if we increase the set of possible heuristics.

The answer to the first question is that the same phenomenon occurs. The
random group still does better, but with a less pronounced advantage. The group
of the best problem solvers becomes more diverse. This occurs because the set of
heuristics is finite and fixed. The Table below provides data from fifty simulations

with groups of size twenty.

Twenty Problem Solvers (I = 12)
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Group Composition | Performance Ordered Diversity Diversity

Best Problem Solvers 93.78 (0.015) 74.95 (0.425) 44.47 (0.612)

Random Problem Solvers | 94.72 (0.005) 91.46 (0.066) 74.88 (0.080)

To answer the second question, we present data from computations where
problem solvers can look up to twenty spots ahead on the circle. Now, the total
number of problem solvers equals 6840. Three predictions come to mind. First,
the diversity of the random group should be greater as a result of the increase in
the number of heuristics. Second, this increased diversity should improve the random
group’s performance. And third, the increase in the number of problem solvers implies
that the group of the best problem solvers should also find a better solution. We see,
in fact, that all three occur. The best problem solvers do better. The random problem
solvers do better. And the random problem solvers are more diverse. The Table below

provides data from fifty simulations.

Ten Problem Solvers (I = 20)

Group Composition | Performance Ordered Diversity Diversity

Best Problem Solvers 93.52 (0.026) 73.69 (0.843) 44.53 (1.782)

Random Problem Solvers | 96.08 (0.006) 94.31 (0.089) 85.17 (0.165)
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4 The Mathematical Model

The two previous computational models demonstrate the benefit of diversity in col-
lective problem solving. In both models, we found that a randomly formed group of
problem solvers often jointly outperforms a group of the best individuals as ranked
by expected value. The explanation substantiated in the second model is that the
best problem solvers are less diverse in their problem solving approaches than are the
members of a randomly selected group. We now construct a mathematical model that
provides sufficient conditions for this result, for a group of randomly selected problem
solvers to outperform a group consisting of the problem solvers who perform best
individually. We begin with a set of objects X. The set can be finite, denumerable
or a continuum. In the main body of the paper, we present a model where X is finite
and leave the general model to the appendix. The finite model has been constructed
so as to make the insight more obvious. The relationship between the assumptions
and the result is much more subtle in the general proof.

Let X be a finite set of objects and V' : X — [0,1] be a given value function
with a unique maximum at z*, and V(2*) = 1. The problem solvers try to locate
a solution that maximizes V', but they have limited abilities. Each problem solver
employs a search rule to search for the maximum but does not always end up at
x*. Suppressing the distinction between perspectives and heuristics, we characterize

each problem solver by a mapping ¢ : X — X. We make several assumptions
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about problem solvers’ mappings. The first is that the mappings locate higher valued

solutions and that the problem is difficult.

Assumption 1

(a) Vz € X, V(¢(x)) = V(z)

(d) (Difficulty) There exists x € X, such that ¢(z) # z*.

The mapping ¢ has the following interpretation: for each z, ¢(z) denotes the
local maximum if the agent starts search at x, that is, it is the stopping point of the
search rule ¢ applied to z. In this interpretation, search is deterministic, an initial
point uniquely determines a stopping point. The image of the mapping, ¢(X), is the
set of local maxima for problem solver ¢.

Next, we define v to be an initial probability distribution on X that assigns a

positive probability to each z € X.
Assumption 2
v: X — [0,1] such that (a) Vo € X, v(z) > 0 and (b) > ,cx v(z) =1

A problem solver ¢ begins a search by drawing an initial point according to
the probability distribution v. If the initial point is x, then the search ends at ¢(x).

We call the expected value of the search the performance of ¢, given v and V. We
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denote this expected value as E(¢, V). E(¢,V) = Y cx V(o(z))v(z).
Let ® denote a collection of problem solvers, a set of ¢’s that satisfy Assump-
tion 1. Notice that because the sets of initial and final points are both finite, & must

also be finite. The next assumption guarantees a diversity of problem solvers.

Assumption 3 (Diversity)

Vo € X\ {z*}, 3¢ € ® such that ¢(z) # =z

This diversity assumption says that there are no solutions other than the
global optimum that are local optima for all of the problem solvers. We next assume

a probability distribution px on ® that assigns a positive probability to each ¢ in .

Assumption 4
p: ®—[0,1] such that (a) V¢ € @, u(¢) > 0 and (b) Xyee () =1

From &, the set of problem solvers, we select a group of N agents, each agent
is selected independently from ® according to the probability distribution p. These
N agents are ordered by their individual performance, F($, V). Choose the best N;
agents. We compare the joint performance of this group of N; agents with that of
another group of N; agents which is formed by selecting each from & independently
according to p.

We make the following uniqueness assumption before we present the theorem.

We discuss the role this uniqueness assumption plays and its validity after stating
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and proving the theorem.

Assumption 5 (Uniqueness)

argmaz{E(p,V) : ¢ € &} is unique.

If the value function V is one to one and v is a uniform distribution, then the

uniqueness assumption is satisfied.

Theorem Suppose V, ® v, and i satisfy Assumptions 1 - 5. Then, with probability
1, a sample path will have the following property: there exist positive integers N and
N1, N > Ny, such that the joint performance of the Ny independently drawn problem
solvers exceeds the joint performance of the Ny individually best problem solvers among

the group of N agents independently drawn from ® according to p.

Here, there are in fact two independent random events: one is to independently
draw a group of problem solvers and the other is to independently draw a group
of problem solvers and then select a subgroup according to their individual ability.
The sample path we speak of in the theorem is the joint sample path of these two
independent events.

The following two ideas are used in the proof. First we show (Lemma 1 below)
that for the first random event of drawing independently a group of problem solvers,
with probability 1, the joint performance of the group will asymptotically converge

to 1 — the best one can hope for. This is quite intuitive given that agents are drawn
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independently and thus are unlikely to have common local maxima. As the number
of agents in the group grows, the probability of them having common local maxima
converges to 0. The second idea uses the uniqueness assumption to show that in
the second random event, with probability 1, asymptotically there exists a given size
such that the subgroup of the best individuals of that size consists of one type of
agents, namely, they are all ¢* — the unique problem solver of the highest individual
ability in ®. This establishes an upper bound of a value strictly less than 1 on the
performance of the best group since ¢* can not always reach the global maximum
(recall from Assumption 1 that we do not allow any individual problem solver to
always locate the optimum.)

Consider the first random event of forming a group of problem solvers, each
problem solver is independently selected from & according to the probability distri-
bution u. Fix a sample path of this random event, w;. Let ¢'(wy), ..., 9" (w;) denote
the group of the first n; problem solvers selected on the sample path w;. The joint
performance of these n; problem solvers is the expected value of V(y) where 7 is
a common local maximum of all n; agents. The distribution of 7 is induced by the
probability distribution of the initial draw, v, and a precise model of how agents work
together. Here we want to point out that our theorem holds for any specifically given
model of agents working together. The proof of the theorem that follows does not

depend on a specific model. Without being explicit, we assume that y follows the
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probability distribution ! : X — [0,1], i.e., for any x € X, Pr(y = x) = n]} (x).
Lemma 1 Pr {w1 My, o0 Ygex V(@) (z) = 1} =1

Proof: Fix any 0 < ¢ < 1. Define A4,, = {w1 t1 = Ypex V()i (z) > e}. Ob-
viously, A,, C {w:: @' (w1),..., 9" (w;) have common local maxima other than z*}.

Thus,

Pr(4,,) <Pr {wl : ¢t (w1), .., @™ (w1) have common local maxima other than :L'*} .

Let m = min {p(¢) : ¢ € ®}. By Assumption 4, m > 0. For any z € X\ {z*},
we have p({¢ € @ : ¢(z) = }) <1 —m. This is because of Assumption 3 that there
is at least one ¢ in ® for whom x is not a local maximum.

By independence,

Pr{w; : ¢'(w1), ..., " (w1) have common local maxima other than z*}
< Ysex\{z+} Pr{w: : 7 is a common local max of A (wy), ey @™ (w1)}
< Yoex\fzr} (1 —m)™

< (I X]=1) (1 —m)™

Therefore,
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By the Borel-Cantelli Lemma, we have

Pr {wl 1= Y V(@) > e i.o.} =0

reX

which implies

Pr {w1 : n}g}noo S Viz)ni(z) = 1} =1

reX
We now prove the theorem.

Proof of the theorem: Consider the second random event where a group of n
agents are drawn independently from & according to p and then a subgroup of a
given size that consists of problem solvers with the best individual abilities among
n agents is formed. By Assumption 5, the uniqueness assumption, there is a unique
problem solver in ® with the highest individual ability. Call that agent ¢*. By the

law of large numbers, we have

n—00 n

Pr {wg : lim #li €l n}:¢'(w) =} = M(W)} =1

The fraction in the above expression is the frequency of ¢* in the draw. Let €2 be the

set of sample paths w = (wy,ws) that have both of the asymptotic properties above,
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i.e., define

limp, 00 Ygex V(@)1 (2) =1
Q=<w=(wy,ws) :

#1i€{1,...,n}:¢t (w2)=0¢" *
{ =o'} _ 1(4*)

and lim,,_, -

By Lemma 1, we have

Pr(Q) = 1.

Fix any w € . Let ¢, = 1 — E(¢*, V) which is positive since the perfect agent is
excluded from our consideration and that v has X as its support. From the first limit

above, we know that there exists an integer 7; > 0 such that for any n; > 7y,

Z V nwl > 1—¢ = (¢*, V)

zeX

From the second limit above, there exists an integer 7 > 0 such that for any

#{l € {L an} : ¢i(w2) = (b*} > :u(¢*)
n 2

Let Ny =7, and N = max{f@i),ﬁ}. Then

Y Viz)nii(z) > E(¢*, V).

zeX

The left hand side of the above inequality is the joint performance of the group of
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N; agents independently selected according to y. We now prove that the right hand
side term is the joint performance of the group of /NV; best agents from the group of

N agents. By construction, N > 7. Therefore,

#0i € {1, N} i 6iwn) = 67 pi(6")
N 2

That is,

u(¢*)N

# {z €{l,...N}: ¢'(wy) = (;S*} > =3

>n =N

since N > N%Zi). This means that there are more than N; numbers of agents among

the group of N agents that are the highest ability agent ¢*. Thus, the best N; agents
among the NV agents are all ¢*. Obviously their joint performance is exactly the same
as the performance of ¢* which is F(¢*, V). To summarize, for each w € €, there
exist N; and N, N > Ny, such that the joint performance of the group of /N; agents
independently drawn according to yu is better than the joint performance of the N;
best agents from the group of N agents independently drawn according to u. Since

the set €2 has probability 1, the theorem is proven.

Remark 4.1 The uniqueness assumption plays an tmportant role in the proof. It
allows us to show that as the group size increases, the best subgroup becomes homo-

geneous, i.e., they are all the unique best and therefore, they are of no use to each
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other. This is a stronger assumption than we need. Suppose instead that there is a
set of problem solvers that all have the highest expected value. All we need is that the
intersection of the images of these problem solvers’ mappings has a cardinality strictly
greater than one. Thus, we can replace Assumption 5 with the following weaker as-

sumption.

Assumption 5’

Problem solvers in argmaz{E(¢,V) : ¢ € ®} have a common local maximum

not equal to z*.

Remark 4.2 We might also ask what assumptions would lead to a violation of the
uniqueness condition. Suppose the value function, V', does not assign unique values
to each element of X. For simplicity, assume that ' and x" both have the second
highest value under V. Suppose further that the probability distribution v according
to which the initial point of search is drawn, is the uniform distribution on X. Then,
there could be two best problem solvers: ¢*' : X — X, who map z' to itself and maps
everything else to x*, the global optimum, and ¢** : X — X, who maps " to itself and
maps everything else to x*. Working together these two agents would always locate

the global optimum.

Remark 4.3 The previous example violates the spirit of the difficulty assumption.
Difficult problems should have many, not just two, local optima for each problem
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solver. Moreover, the basin of attraction for the global optimum should be small.
Problem solvers who are similar will have sets of local optima that do not differ by
much. Diverse agents will tend to have less overlap in their sets of local optima. This
suggests that the diversity assumption can also be weakened. And, in fact, in the

general proof presented in the appendiz, we do just that.

5 Discussion and Extensions

The main results of this paper rely on straightforward logic. If people are bounded,
they probably differ in how they solve difficult, i.e. multi-dimensional nonlinear prob-
lems. Differences in perspectives and heuristics enable collections of agents to design
particle accelerators, pharmaceuticals, and basketball shoes. Being boundedly ratio-
nal only stifles good decisions if we are boundedly rational in the same way. If the best
problem solvers tend to think about a problem similarly, then it stands to reason that
as a group they may not be very effective. Random groups may be better owing to
their diversity. This paper investigates the strength of this logic. The computational
experiments demonstrate the robustness of the argument, the finite model describes
a set, of sufficient conditions, and the general model provides much weaker sufficient
conditions.

If the argument itself seems provocative, the implications are even more so.

For problem solving firms, an employee’s value depends upon her ability to improve
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decisions. The diversity of her problem solving approach, as embedded in her perspec-
tive/heuristic pair, relative to the other problem solvers appears to be an important
aspect of her value. It may be even more relevant than her individual expected value
on the problem. Though IQ tests, SAT scores, and college grades may be excellent
predictors of raw problem solving ability, they may not be as useful in determining the
value added of an employee. Maintaining a diversity of problem solving approaches
may be as, and possibly more important than hiring people of high individual ability
when putting together a group, team, or collection of problem solvers. Therefore, em-
ployers might want to focus on the relative uniqueness of applicants’ human capital,
admittedly something that could prove hard to measure.

The need for a diversity of perspectives and heuristics for firms that solve
problems may in part explain the increased prevalence of consultants (Frank and Cook
1996). Firms confronting difficult problems may benefit from bringing in outsiders
especially if people within the firm think about problems similarly. Internal group
thinking could arise from a corporate culture. Over time, employees may evolve
common perspectives and heuristics. Group thinking could also arise if the firm hired
only the best people because the best people may tend to think alike. Firms with only
a few perspectives, or in extreme cases a single perspective at their disposal could
easily become stuck on local optima, generating a need for outside consultants. The

consultants need not be “smarter” than the firm to locate improvements. They only
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need to possess perspectives and heuristics that locate improvements over the status
quo.

The results also speak to the power of markets. If the value of an object
equals its market value and if rents from locating improvements are appropriable,
then markets should lead to improving solutions to economic problems. An agent who
locates an improvement to an economic problem receives a rent. In a market setting,
anyone knowing of an improvement has an incentive to implement it or to sell their
idea to someone who will. The diversity of human perspectives and heuristics implies
that no local and non global optimum should be sustainable. Someone eventually
builds a better mousetrap, not because that person is smarter than anyone who ever
contemplated the mousetrap, but because that person sees or approaches the problem
differently. While incentive effects may cause delays in innovations, eventually any
improvement should either come to market or become obsolete.

In contrast, the incentives to implement an improvement may be stifled within
a problem solving firm. A worker may know how to speed up an assembly line, but
the decision may not lie in his problem domain, or the costs of mentioning the im-
provement may outweigh the benefits. In cases where the improvement is sufficiently
large, the worker may have an incentive to create his own competing enterprise, but
otherwise, the improvement may never be implemented.

It follows that our theory of optimization based on a common value function
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and diverse problem solving approaches also has strong implications for organizational
forms and management styles, especially for problem solving firms such as computer
software companies. In an environment where competition depends on continuous in-
novation and introduction of new products, firms with organizational forms that are
decentralized and consist of interdependent confederations of project teams linked by
informal communications, and management styles based on teamwork, openness and
participation, should flourish. All else equal, firms with these organizational forms
and management styles take full advantage of the diverse problem solving approaches
of their employees. In a recent book, Saxenian [1994) documents the superior perfor-
mance of Silicon Valley firms relative to that of Route 128 firms which she attributes
partly to the organizational forms and management styles that evolved through re-
gional cultural influences. Our paper provides a theoretical underpinning for such
observations.

The ideas put forth in this paper could also be adapted to the study of political
decision making. Throughout, we have assumed that problem solvers have identical
ordinal rankings of the outcomes. In political contexts this is decidedly not the case.
Democrats and Republicans often profess opposing views on tax rates, environmental
policy, and welfare plans. Each party probably has its own value function. Never-
theless, an extended version of our model would say that the party in power would

still benefit from listening to proposals from the minority party if the minority party
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has a different perspective and heuristic. Of course, the potential for the diversity of
perspectives and heuristics to be beneficial should vary with the level of correlation
of the value functions.

The current model ignores several important features including incentives,
communication, and learning. Incentives matter for two reasons. They could create
diverse preferences over outcomes: One problem solver may prefer outcome A to
outcome B because she obtains higher income under A, or because she does not
have to work as hard to achieve A. And, as we mentioned earlier, incentives may
temporarily lead a problem solver to not reveal an improvement because she wants a
leg up in searching for subsequent improvements. Revealing a better solution may be
informative to competitors. Second, our strong assumption of costless communication
reveals another potential extension: the perspective/heuristic framework could be
used to provide micro—foundations for communication costs. Problem solvers with
nearly identical perspectives, but diverse heuristics should communicate with one
another easily. But, problem solvers with diverse perspectives may have trouble
understanding solutions identified by other agents. Firms then may want to hire
people with similar perspectives yet maintain a diversity of heuristics. In this way,
the firm can exploit diversity while minimizing communication costs. Finally, our
model also does not allow problem solvers to learn. Learning could be modeled as the

acquisition of new perspectives and heuristics. Clearly, in a learning model, problem
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solvers would have incentives to acquire diverse heuristics and perspectives.

Loyola University Chicago. lhong@luc.edu and the University of Michigan
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Appendix

In the appendix, we present a general mathematical model that encompasses
the finite model as a special case. Since the discussion in the appendix is self-
contained, the numbering system should not be confused with the numbering system
of the main body of the paper.

Consider a set of objects X. X can be a finite, a denumerable or a continuum
set. Let V : X — [0,1] be a given value function which has a unique maximum
at z*, and V(z*) = 1. Again, we consider problem solvers who have limited ability
in trying to maximize V. Each problem solver employs a search rule to search for
the maximum but does not always end up at x*. A problem solver is defined by a
mapping ¢ : X — X which satisfies the following assumptions:

Assumption 1
(a) Vo € X, V(8(z)) = V(z)
(b) ¢(z) = o~
(c) ¢ (8(x)) = o(x)
For each z € X, ¢(z) is the local maximum of the problem solver if the search
starts at x. ¢(X) is then the set of local optima for problem solver ¢. Since X can
be a continuum, we need some technical assumptions.

Let F be a o-field of X. Let A be a finite measure of (X, F). Assume that a
problem solver ¢ also satisfies the following assumption:

Assumption 2

(a) ¢(X) is countable.

(b) ¢ is measurable regarding F.

Let ¥ be the set of all problem solvers that satisfy Assumptions 1 and 2. Then it is
easy to show that for any ¢!, ¢? € U, {z € X : ¢'(z) # ¢*(z)} € F.

Problem solvers in ¥ may differ only on a set of A-measure 0. We want to
consider such problem solvers as the same.

Definition 1 Two problem solvers ¢, ¢? from U are called equivalent if

A ({x € X :¢'(z) # (/52(33)}) = 0.
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This defines an equivalence relation on W. Consider the quotient space of ¥ with
regard to this equivalence relation. For the rest of the discussion, we are only going
to refer to this quotient space. We therefore still denote it by ¥ without confusion.
U refers to any set of all problem solvers that are not equivalent. We now define a
metric on W.

Definition 2 Define d: ¥ x ¥ — R, such that

d(¢',¢*) = A ({z € X : ¢'(z) # ¢*(2)}).

Lemma 1 (®,d) is a metric space.

Proof: To show that the triangle inequality holds, we only need to notice that

{z € X:¢'(z) #¢°(x)}
Cl{reX:¢' () (@)} U{r € X : ¢°(x) # ¢*(2)} .

Let v denote a probability measure on (X,F). A problem solver ¢ starts
her search for the maximum of V' by first drawing an initial point according to the
probability distribution v. The expected value of the search by ¢ is then defined to
be the performance of the problem solver ¢. E(¢,V) = [ V(¢(z))dv(x).

Assumption 3

v and A are mutually absolutely continuous.

Assumption 3 means that sets of v-measure 0 and sets of A-measure 0 coincide. Since
both are finite measures, they will be treated exactly the same for our purposes
without loss of generality. For the rest of the discussion, whenever \ appears, it will
be replaced by v.

Lemma 2 E(-,V): (¥,d) — [0,1] is uniformly continuous.

Proof: For any ¢*, ¢? € ¥,
|E(¢17 V) - E(¢2a V)|

VAN
?
<<
—
ASS
-l
N—r
|
<<
—
ASS
o
—_
&
IoH
A~
—_
8
N—

|
= f{zEX:qbl(m);écpz(m)} \V(¢1 )
<v({zeX:¢'(x)#
=d(¢', ¢%)
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The uniform continuity follows.
Let ® be a compact subset of ¥ that satisfies the following assumption:

Assumption 4
(a) a =sup{V (y) : for y # z* and y = ¢(y) for some ¢ € &} < 1

(b) (Difficulty) There exists a constant p, 0 < p < 1, such that for any ¢ € @,
v({z e X :¢(x)=1a"}) <p.

Assumption 5 (Uniqueness)

(a) argmaz{E($,V) : ¢ € ®} is unique. Let ¢* denote the unique best problem
solver.

(b) There exists § > 0 such that for any 0 < § < §, E(¢',V) < E(¢",V) for any
¢ e{ped:d(o*¢) >d}and ¢" € {p € P:d(¢* ¢) <d}.

Consider E(-,V). Since it is continuous on ¥ and ® is a compact subset of ¥, there
is at least one maximum on ® for E(-,V). We are actually assuming slightly more
than the uniqueness. We need, in addition, that there is a small ball around ¢* which
does not contain any other local maximum for E(-,V)). What we are ruling out is a
sequence of mappings that have values converging to the value of ¢* that are all local
optima.

Let p be a probability measure on (®, B) where B is the set of Borel sets of ®
generated by the metric d. u is a measure on the space of problem solvers. Assume

Assumption 6

(a) Every open set of (®,d) has a positive u-measure.

(b) (Diversity) There exist a ¢, 0 < ¢ < 1, and a finite partition of X \{z*} denoted
by {Bi, ..., By}, s.t. Yk =1,.. K,

p({pe®@:3ye€ By, st. y=9(y)}) <q.

The diversity assumption says that the problem space can be partitioned into a finite
number of regions such that the probability of problem solvers who have local maxima
in any given region is bounded away from probability 1.

With this general model, we still have the following theorem:
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Theorem Suppose V,®,v, and p satisfy Assumptions 1 - 6. Then, with probability
1, a sample path will have the following property: there exist positive integers N and
N1, N > Ny, such that the joint performance of the Ny problem solvers independently
drawn according to u exceeds the joint performance of the Ny individually best problem
solvers among the group of N problem solvers independently drawn from ® according
to p.

The proof of the theorem follows ideas similar to the proof in the finite model.
The details of the proof, however, are more elaborate given the general nature of the
model. We prove the theorem with the help of two lemmas. Lemma 3 below shows
when we draw problem solvers independently from ®, that with probability 1, the joint
performance of the problem solvers converges to the global optimum asymptotically.
This lemma relies on the assumption of diversity. The diversity assumption guarantees
that the intersection of the sets of local maxima of the problem solvers shrinks to one
point: the global optimum. In Lemma 4, we establish an upper bound for the joint
performance of a group of the best problem solvers. The proof of this lemma depends
heavily on the uniqueness assumption. From a large enough sample of problem solvers,
the best problem solvers all lie near the best problem solver in d-distance. Therefore,
they tend to have similar sets of local maxima.

In the proof, we consider a randomly formed group of problem solvers and
compare its performance to that of a group of the best solvers. Consider first the
random event of forming a group of problem solvers, each problem solver is inde-
pendently selected from & according to the probability distribution p. Fix a sample
path of this random event, w;. Let ¢'(w), ..., 9" (w;) denote the group of the first
ny problem solvers selected on the sample path w;. The joint performance of these n
problem solvers is the expected value of V() where 7 is a common local maximum
of all ny problem solvers. Assume that g follows the probability distribution 7;!. The
joint performance of ¢'(w1), ..., 9" (wy) is [x V(z)dn (z).

Lemma 3 Pr {w1 limy, o0 [x V(x)dnli(z) = 1} =1

Proof: Fix any 0 < € < 1. Define 4,, = {wl t1 =[x V(z)dnli(z) > e} . Obviously,
Apy CHwr : ¢ (wr), -, @™ (wy) have common local max other than z*}. Thus,

Pr(An,) < Priw; : ¢'(wi), ..., o™ (w;) have common local max other than z*} .
By diversity and independence,

Pr{w; : ¢*(w1), ..., ®"*(w1) have common local max other than z*}
< 3K Pr{w; : ¢*(wi), ..., 3™ (w1) have common local max in B}
< 3K Pr{w; : ¢*(w),..., ™ (w1) each has local max in B}
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<YK w{ped®:Fye By, st y=o(y)}™
< K¢™

Therefore,

K
ZPr n Sl q

ni=1

By Borel-Cantelli Lemma, we have

Pr {w1 :1— /X V(z)dnj! (z) > € i.o.} =0

which implies
Pr {wl Jlim [V (@) @) = 1} ~ 1.
In the next lemma, we give an upper bound for the joint performance of a

group of n problem solvers who are close to each other in d.

Lemma 4 For any € > 0 and any positive integer n such that (n—1)e < 1 —p (Recall
p appears in Assumption 4), consider any n problem solvers ¢, ..., #" that are within
¢ d-distance from each other, i.e. d (¢, #’) < € for any i, j € {1,...,n} . Then the joint
performance of these n problem solvers, denoted by E(¢?,...,¢™; V), is bounded by
1—(1-a)[l=(n—-1)e—p] Le,

E@',...omV)<1l—(1=a)l-(n—-1)e—p|

Proof: Suppose the group starts their search at x such that ¢'(z) = ... = ¢"(z) # z*.
Then the search of the group will get stuck at ¢'(z) = ... = ¢"(x) which is a common
local max of all n problem solvers but is not a global max x*. We consider the set
of such z. If such set has a positive measure, then the joint performance of these n
problem solvers will be less than 1. Notice that

{zeX:¢'(x)=...= ¢"(x) # 2%}
={z e X:¢'(z)=..=9¢"(x)}
\{reX:¢'(z)=..=¢"(z) =2*}.

First, since

@€X¢()

.= ¢"(x)}
= X\ U5 {xEX A (x

)= =¢'(x) # ¢ (2)}

we have
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v({z € X : ¢ (x) = ... = ¢"(x)}) . .
=1-Yv({re X ¢\ () =.. = ¢'(z) # ¢"(2)})
>1-Yv({z € X ¢ (a) # ¢ (2)})

=1- i d(gh, ¢")

>1—(n—1)e

The last inequality holds since d (¢%, ¢/) < € for any 7,5 € {1,...,n}. Now consider
{z e X:¢'(x)=...=¢"(z) = 2*}. Since

{zeX:¢'(x)=...=¢"(x) =2} C{z € X : ¢'(z) = 2*},
we have
v({z e X: o' (z) =...=¢"(z) = z*})

<v({{zeX:¢(z) =2"}) <p.
The last inequality is because of part (b) of Assumption 4. Thus we have

V(o € X1 §12) = . = 4(s) £ 2°))

— (€ X 6 z) = .. = (@)
—v({zeX: ¢l (z) =...=¢"(x) =x*})

>1—(n—1)e—p>0

given that (n —1)e <1 —p.
Then, the joint performance of this group of n problem solvers has the following
property:

E(¢, ..., o™ V)
<V(@)[1-v({z € X:¢'(z) =..=¢"(z) #2"})]
+av ({z € X : ¢'(z) = ... = ¢"(x) # z*})

<l 1-1-(Mn-1e—p]]+a-1—-(n—1)—p|

=1-(1—-a)[l —(n—-1)e—p].
The first inequality holds because the right hand side is the joint performance if (1)
whenever problem solvers end up with different ¢’(x), they are eventually taken to
x* (2) whenever problem solvers get stuck together, they achieve the highest value

for all the local max. Both assume the most optimism.
Now we prove the theorem using Lemma 3 and Lemma 4.

Proof of the Theorem: Let Q; = {w1 Hlimp, oo [x Vi(@)dn(l (x) = 1} . Let § be a
positive number such that 0 < § < (1 —p)(1 — a). Then for any w; € €, there exists
71 (w1) > 1 such that for any n; > 7y (w1), [x V(z)dnli(z) > 1 6.

Let (71 (w;)) = min {m (1 —p— %a) : 5}. Recall that d is a parameter
in the uniqueness assumption (Assumption 5). Since 6 < (1 —p)(1 —a) and § > 0,
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6(ﬁ1(w1)) > 0.

For any € > 0, let O(¢*,€) = {¢ € ® : d(¢, ¢*) < €} where ¢* is the unique best
problem solver in ®. Since O(¢*, €) is open, by part (a) of Assumption 6, p (O(¢*, €)) >
0. Consider € = M Let 7z denote p(O(o*, M)) Consider the second random
event mentioned above Define

ie{l,...,n}:d * M
R e

n—0o0 n

By the law of large numbers, Pr(Q2(71(w1))) = 1. This is true for every w; € €.
Then Yw, € Qg(ﬁl(wl)), dn > 1s.t. Vn > mn,

#{i€ {10} (¢ (wn), ¢7) < rfed}

n

>

VIS

or equivalently,

VIS

4 {z € {1,...n}:d(¢'(wy), ¢%) <

For any wi € Ql and Wy € Qg(ﬁl(wl)), let N1 :ﬁl(wl) and N = max {% . ﬁl(wl),
Since N > 7, we have

#11 € {1, ,N} : d(qbz(wQ)’gb*) < €(ﬁ1§w1))}
>E-N

> 71y (wy)

= Nl.

=

|~

This means that among N problem solvers along the path ws, there are more than
N; problem solvers who are within 6%2& d-distance from ¢*. Since C(EIQM <
€(Mi(w1)) < 4, by the uniqueness assumption (Assumption 5), the individual per-
formance of each such problem solver is strictly better than that of problem solvers
who are more than M d-distance away from ¢*. Therefore, the best N; problem
solvers among the group of N problem solvers are all strictly within "lfwl) d-distance
from ¢*. By the triangular property of d, these N; best problem solvers are strictly
within €(7; (wq)) distance from each other

By definition, €(m;(w)) < N1 - (1 —-p— —) Since 0 > 0, we have (N; —
1)e(m1(w1)) < 1 — p. By Lemma 4, the joint performance of these N; best problem
solvers among those N problem solvers is strictly less than 1 — (1 — a)[1 — (N; —
e(mi (wi)) — pl- But since e(m(w1)) < 75 (1-p—1%), 1 - (1 —a)1 — (N —
1)e(my(w1)) — p] < 1 — 6. Here notice that Ny = nl(wl).
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From the beginning of the proof, we have [y V(x)dnl'(z) > 1 — 4. Thus
the joint performance of the N; problem solvers along w; is better than the joint
performance of the N; best problem solvers among the group of N problem solvers
along ws.

Let QQ = ﬂﬁl(wl)Qz(ﬁl(w1)). Since Pr(Qg(ﬁl(wl))) = 1 for each ﬁl(wl) and
the intersection is countable, Pr(€Qy) = 1. Regarding €;, by Lemma 3, we have
Pr (Ql) =1.

To summarize then, we have for any w; € ; and wq € )y, there exist positive
integers N; and N, N; < N, such that the joint performance of the N; problem
solvers along w; is better than the joint performance of the N; best problem solvers

among the group of N problem solvers along w,. Since w; and w, are independent
and Pr(2;) = 1 and Pr(Qy) = 1, we have Pr (2; x ) = 1.
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